2,257 research outputs found

    Maintainence of parasitaemia – is it to die for?

    Get PDF
    One of the major differences between protozoan differentiation and metazoan differentiation is that protozoan cells normally retain potency during differentiation, which need not, therefore, be considered altruistic. Altruism does, however, arise at the level of the organism and consequently, protozoons have the potential to evolve altruistic traits. This is particularly true when, as with Trypanosoma brucei parasitaemias, populations are genetically homogeneous. This essay argues that whilst reports of altruistic phenomena during the trypanosome life cycle remain controversial, the prospect of reagents able to instigate pathways of cell death or differentiation bears further investigation

    Limitation of Trypanosoma brucei parasitaemia results from a combination of density-dependent parasite differentiation and parasite killing by the host immune response

    Get PDF
    In the bloodstream of its mammalian host, the "slender" form of Trypanosoma brucei replicates extracellularly, producing a parasitaemia. At high density, the level of parasitaemia is limited at a sublethal level by differentiation to the non-replicative "stumpy" form and by the host immune response. Here, we derive continuous time equations to model the time-course, cell types and level of trypanosome parasitaemia, and compare the best fits with experimental data. The best fits that were obtained favour a model in which both density-dependent trypanosome differentiation and host immune response have a role in limiting the increase of parasites, much poorer fits being obtained when differentiation and immune response are considered independently of one another. Best fits also favour a model in which the slender-to-stumpy differentiation progresses in a manner that is essentially independent of the cell cycle. Finally, these models also make the prediction that the density-dependent trypanosome differentiation mechanism can give rise to oscillations in parasitaemia level. These oscillations are independent of the immune system and are not due to antigenic variation

    Efficacy of common laboratory disinfectants and heat on killing trypanosomatid parasites

    Get PDF
    The disinfectants TriGene, bleach, ethanol and liquid hand soap, and water and temperature were tested for their ability to kill bloodstream forms of Trypanosoma brucei, epimastigotes of Trypanosoma rangeli and promastigotes of Leishmania major. A 5-min exposure to 0.2% TriGene, 0.1% liquid hand soap and 0.05% bleach (0.05% NaOCl) killed all three trypanosomatids. Ethanol and water destroyed the parasites within 5 min at concentrations of 15-17.5% and 80-90%, respectively. All three organisms were also killed when treated for 5 min at 50 degrees C. The results indicate that the disinfectants, water and temperature treatment (i.e. autoclaving) are suitable laboratory hygiene measures against trypanosomatid parasites

    Superconductivity and magnetism in platinum-substituted SrFe2As2 single crystals

    Full text link
    Single crystals of SrFe2-xPtxAs2 (0 < x < 0.36) were grown using the self flux solution method and characterized using x-ray crystallography, electrical transport, magnetic susceptibility, and specific heat measurements. The magnetic/structural transition is suppressed with increasing Pt concentration, with superconductivity seen over the range 0.08 < x < 0.36 with a maximum transition temperature Tc of 16 K at x = 0.16. The shape of the phase diagram and the changes to the lattice parameters are similar to the effects of other group VIII elements Ni and Pd, however the higher transition temperature and extended range of superconductivity suggest some complexity beyond the simple electron counting picture that has been discussed thus far.Comment: 6 pages, 6 figure

    Multi-locus analysis of human infective Cryptosporidium species and subtypes using ten novel genetic loci

    Get PDF
    Background: Cryptosporidium is a protozoan parasite that causes diarrheal illness in a wide range of hosts including humans. Two species, C. parvum and C. hominis are of primary public health relevance. Genome sequences of these two species are available and show only 3-5% sequence divergence. We investigated this sequence variability, which could correspond either to sequence gaps in the published genome sequences or to the presence of species-specific genes. Comparative genomic tools were used to identify putative species-specific genes and a subset of these genes was tested by PCR in a collection of Cryptosporidium clinical isolates and reference strains. Results: The majority of the putative species-specific genes examined were in fact common to C. parvum and C. hominis. PCR product sequence analysis revealed interesting SNPs, the majority of which were species-specific. These genetic loci allowed us to construct a robust and multi-locus analysis. The Neighbour-Joining phylogenetic tree constructed clearly discriminated the previously described lineages of Cryptosporidium species and subtypes. Conclusions: Most of the genes identified as being species specific during bioinformatics in Cryptosporidium sp. are in fact present in multiple species and only appear species specific because of gaps in published genome sequences. Nevertheless SNPs may offer a promising approach to studying the taxonomy of closely related species of Cryptosporidia

    Cryptosporidium

    Get PDF
    The protozoan Cryptosporidium is notorious for its resistance to chlorine disinfection, a mainstay of water treatment. Human infections, mainly of the small intestine, arise from consumption of faecally contaminated food or water, environmental exposure, and person-to-person or animal-to-person spread. Acute gastrointestinal symptoms can be prolonged but are usually self-limiting. Problems arise with immune-deficient, including malnourished, people including chronic diarrhoea, hepato-biliary tree and extra-gastrointestinal site infection, and few options for treatment or prevention exist. Although genomics has enabled refined classification, identification of chemotherapeutic targets and vaccine candidates, and putative factors for host adaption and pathogenesis, their confirmation has been hampered by a lack of biological tools

    Flagellar membrane association via interaction with lipid rafts

    Get PDF
    The eukaryotic flagellar membrane has a distinct composition from other domains of the plasmalemma. Our work shows that the specialized composition of the trypanosome flagellar membrane reflects increased concentrations of sterols and saturated fatty acids, correlating with direct observation of high liquid order by laurdan fluorescence microscopy. These findings indicate that the trypanosome flagellar membrane possesses high concentrations of lipid rafts: discrete regions of lateral heterogeneity in plasma membranes that serve to sequester and organize specialized protein complexes. Consistent with this, a dually acylated Ca(2+) sensor that is concentrated in the flagellum is found in detergent-resistant membranes and mislocalizes if the lipid rafts are disrupted. Detergent-extracted cells have discrete membrane patches localized on the surface of the flagellar axoneme, suggestive of intraflagellar transport particles. Together, these results provide biophysical and biochemical evidence to indicate that lipid rafts are enriched in the trypanosome flagellar membrane, providing a unique mechanism for flagellar protein localization and illustrating a novel means by which specialized cellular functions may be partitioned to discrete membrane domains
    corecore